skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malakar, Kanaya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The organization of cells within tissues plays a vital role in various biological processes, including development and morphogenesis. As a result, understanding how cells self-organize in tissues has been an active area of research. In our study, we explore a mechanistic model of cellular organization that represents cells as force dipoles that interact with each other via the tissue, which we model as an elastic medium. By conducting numerical simulations using this model, we are able to observe organizational features that are consistent with those obtained from vertex model simulations. This approach provides valuable insights into the underlying mechanisms that govern cellular organization within tissues, which can help us better understand the processes involved in development and disease. 
    more » « less